Dependence of Spurious Charge-Transfer Excited States on Orbital Exchange in TDDFT: Large Molecules and Clusters.
نویسندگان
چکیده
Time-dependent density functional theory (TDDFT) is a powerful tool allowing for accurate description of excited states in many nanoscale molecular systems; however, its application to large molecules may be plagued with difficulties that are not immediately obvious from previous experiences of applying TDDFT to small molecules. In TDDFT, the appearance of spurious charge-transfer states below the first optical excited state is shown to have significant effects on the predicted absorption and emission spectra of several donor-acceptor substituted molecules. The same problem affects the predictions of electronic spectra of molecular aggregates formed from weakly interacting chromophores. For selected benchmark cases, we show that today's popular density functionals, such as purely local (Local Density Approximation, LDA) and semilocal (Generalized Gradient Approximation, GGA) models, are qualitatively wrong. Nonlocal hybrid approximations including both semiempirical (B3LYP) and ab initio (PBE1PBE) containing a small fraction (20-25%) of Fock-like orbital exchange are also susceptible to such problems. Functionals that contain a larger fraction (50%) of orbital exchange like the early hybrid (BHandHLYP) are shown to exhibit far fewer spurious charge-transfer (CT) states at the expense of accuracy. Based on the trends observed in this study and our previous experience we formulate several practical approaches to overcome these difficulties providing a reliable description of electronic excitations in nanosystems.
منابع مشابه
Asymptotic correction of the exchange-correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations.
Time-dependent density functional theory (TDDFT) calculations of charge-transfer excitation energies omegaCT are significantly in error when the adiabatic local density approximation (ALDA) is employed for the exchange-correlation kernel fxc. We relate the error to the physical meaning of the orbital energy of the Kohn-Sham lowest unoccupied molecular orbital (LUMO). The LUMO orbital energy in ...
متن کاملTesting time-dependent density functional theory with depopulated molecular orbitals for predicting electronic excitation energies of valence, Rydberg, and charge-transfer states and potential energies near a conical intersection.
Kohn-Sham (KS) time-dependent density functional theory (TDDFT) with most exchange-correlation functionals is well known to systematically underestimate the excitation energies of Rydberg and charge-transfer excited states of atomic and molecular systems. To improve the description of Rydberg states within the KS TDDFT framework, Gaiduk et al. [Phys. Rev. Lett. 108, 253005 (2012)] proposed a sc...
متن کاملبه کاربردن تقریب دو حالته در تولید هیدروژن با فرود آمدن پروتون بر روی پوزیترونیوم
Although there is no experimental data available for antihydrogen formation following antiprotons impact on positroium atoms, as a charge transfer reaction, at incident energies which are suitable for antimatter high-precision spectroscopic studies, measurements were carried out for its charge-conjugate reaction i. e. hydrogen formation, by protons impact on positronium. In this study, a two-st...
متن کاملConservation of the pure adiabatic state in Ehrenfest dynamics of the photoisomerization of molecules
We examined real-time-propagation time-dependent density functional theory (rtp-TDDFT) coupled with molecular dynamics (MD), which uses single-particle representation of time-evolving wavefunctions allowing exchange of orbital characteristics between occupied and empty states making the effective Kohn-Sham Hamiltonian dependent on the potential energy surfaces (PESs). This scheme is expected to...
متن کاملCharge-transfer excited states in phosphorescent organo-transition metal compounds: a difficult case for time dependent density functional theory?
Light emitting organo-transition metal complexes have found widespread use in the past. The computational modelling of such compounds is often based on time-dependent density functional theory (TDDFT), which enjoys popularity due to its numerical efficiency and simple black-box character. It is well known, however, that TDDFT notoriously underestimates energies of charge-transfer excited states...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical theory and computation
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2007